Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Cachexia Sarcopenia Muscle ; 15(1): 292-305, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183352

RESUMEN

BACKGROUND: Breast cancer patients are commonly treated with sequential administrations of epirubicin-cyclophosphamide (EC) and paclitaxel (TAX). The chronic effect of this treatment induces skeletal muscle alterations, but the specific effect of each chemotherapy agent is unknown. This study aimed to investigate the effect of EC or TAX administration on skeletal muscle homeostasis in breast cancer patients. METHODS: Twenty early breast cancer patients undergoing EC followed by TAX chemotherapies were included. Two groups of 10 women were established and performed vastus lateralis skeletal muscle biopsies either before the first administration (pre) of EC (50 ± 14 years) or TAX (50 ± 16 years) and 4 days later (post). Mitochondrial respiratory capacity recording, reactive oxygen species production, western blotting and histological analyses were performed. RESULTS: Decrease in muscle fibres cross-sectional area was only observed post-EC (-25%; P < 0.001), associated with a reduction in mitochondrial respiratory capacity for the complex I (CI)-linked substrate state (-32%; P = 0.001), oxidative phosphorylation (OXPHOS) by CI (-35%; P = 0.002), CI&CII (-26%; P = 0.022) and CII (-24%; P = 0.027). If H2 O2 production was unchanged post-EC, an increase was observed post-TAX for OXPHOS by CII (+25%; P = 0.022). We found a decrease in makers of mitochondrial content, as shown post-EC by a decrease in the protein levels of citrate synthase (-53%; P < 0.001) and VDAC (-39%; P < 0.001). Despite no changes in markers of mitochondrial fission, a decrease in the expression of a marker of mitochondrial inner-membrane fusion was found post-EC (OPA1; -60%; P < 0.001). We explored markers of mitophagy and found reductions post-EC in the protein levels of PINK1 (-63%; P < 0.001) and Parkin (-56%; P = 0.005), without changes post-TAX. An increasing trend in Bax protein level was found post-EC (+96%; P = 0.068) and post-TAX (+77%; P = 0.073), while the Bcl-2 level was decreased only post-EC (-52%; P = 0.007). If an increasing trend in TUNEL-positive signal was observed post-EC (+68%; P = 0.082), upregulation was highlighted post-TAX (+86%; P < 0.001), suggesting activation of the apoptosis process. CONCLUSIONS: We demonstrated that a single administration of EC induced, in only 4 days, skeletal muscle atrophy and mitochondrial alterations in breast cancer patients. These alterations were characterized by reductions in mitochondrial function and content as well as impairment of mitochondrial dynamics and an increase in apoptosis. TAX administration did not worsen these alterations as this group had already received EC during the preceding weeks. However, it resulted in an increased apoptosis, likely in response to the increased H2 O2 production.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/patología , Complejo I de Transporte de Electrón/metabolismo , Apoptosis
2.
Med Sci Sports Exerc ; 55(7): 1218-1231, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878018

RESUMEN

PURPOSE: Critical torque (CT) and work done above it ( W ') are key predictors of exercise performance associated with neuromuscular fatigue. The aim of the present study was to understand the role of the metabolic cost of exercise in determining exercise tolerance, CT and W ', and the mechanisms of neuromuscular fatigue. METHODS: Twelve subjects performed four knee extension time trials (6, 8, 10, and 12 min) using eccentric, isometric, or concentric contractions (3-s on/2-s off at 90°·s -1 or 30°·s -1 ) to modulate the metabolic cost of exercise. Exercise performance was quantified by total impulse and mean torque. Critical torque and W ' were determined using the linear relationship between total impulse and contraction time. Cardiometabolic, neuromuscular, and ventilatory responses were quantified. Neuromuscular function was evaluated by maximal voluntary contraction, resting potentiated single/doublet electrical stimulations, and superimposed single electrical stimulation to quantify neuromuscular, peripheral, and central fatigue, respectively. RESULTS: Compared with isometric exercise, total impulse (+36% ± 21%; P < 0.001), CT (+27% ± 30%; P < 0.001), and W ' (+67% ± 99%; P < 0.001) were increased during eccentric exercise, whereas total impulse (-25% ± 7%; P < 0.001), critical torque (-26% ± 15%; P < 0.001), and W ' (-18% ± 19%; P < 0.001) were reduced in concentric exercise. Conversely, the metabolic response and the degree of peripheral fatigue were reduced during eccentric exercise, whereas they were increased during concentric exercise. Critical torque was negatively associated with oxygen consumption gain ( R2 = 0.636; P < 0.001), and W ' was negatively associated with rates of neuromuscular and peripheral fatigue indices ( R2 = 0.252-0.880; P < 0.001). CONCLUSIONS: The contraction mode influenced both CT and W ', and consequently exercise tolerance, indicating that the metabolic cost of contraction played a key role.


Asunto(s)
Tolerancia al Ejercicio , Fatiga Muscular , Humanos , Tolerancia al Ejercicio/fisiología , Fatiga Muscular/fisiología , Torque , Rodilla/fisiología , Articulación de la Rodilla , Contracción Isométrica/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Electromiografía
3.
Eur J Appl Physiol ; 123(7): 1567-1581, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36939876

RESUMEN

PURPOSE: The present study aimed to characterize the etiology of exercise-induced neuromuscular fatigue and its consequences on the force-duration relationship to provide mechanistic insights into the reduced exercise capacity characterizing early-stage breast cancer patients. METHODS: Fifteen early-stage breast cancer patients and fifteen healthy women performed 60 maximal voluntary isometric quadriceps contractions (MVCs, 3 s of contraction, 2 s of relaxation). The critical force was determined as the mean force of the last six contractions, while W' was calculated as the force impulse generated above the critical force. Quadriceps muscle activation during exercise was estimated from vastus lateralis, vastus medialis and rectus femoris EMG. Central and peripheral fatigue were quantified via changes in pre- to postexercise quadriceps voluntary activation (ΔVA) and quadriceps twitch force (ΔQTw) evoked by supramaximal electrical stimulation, respectively. RESULTS: Early-stage breast cancer patients demonstrated lower MVC than controls preexercise (- 15%, P = 0.022), and this reduction persisted throughout the 60-MVC exercise (- 21%, P = 0.002). The absolute critical force was lower in patients than in controls (144 ± 29N vs. 201 ± 47N, respectively, P < 0.001), while W' was similar (P = 0.546), resulting in lower total work done (- 23%, P = 0.001). This was associated with lower muscle activation in the vastus lateralis (P < 0.001), vastus medialis (P = 0.003) and rectus femoris (P = 0.003) in patients. Immediately following exercise, ΔVA showed a greater reduction in patients compared to controls (- 21.6 ± 13.3% vs. - 12.6 ± 7.7%, P = 0.040), while ΔQTw was similar (- 60.2 ± 13.2% vs. - 52.8 ± 19.4%, P = 0.196). CONCLUSION: These findings support central fatigue as a primary cause of the reduction in exercise capacity characterizing early-stage breast cancer patients treated with chemotherapy. CLINICAL TRIALS REGISTRATION: No. NCT04639609-November 20, 2020.


Asunto(s)
Neoplasias de la Mama , Fatiga Muscular , Humanos , Femenino , Fatiga Muscular/fisiología , Tolerancia al Ejercicio/fisiología , Neoplasias de la Mama/complicaciones , Neoplasias de la Mama/tratamiento farmacológico , Músculo Cuádriceps/fisiología , Contracción Isométrica , Electromiografía , Contracción Muscular/fisiología , Músculo Esquelético/fisiología
4.
Cancer ; 129(2): 215-225, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36397290

RESUMEN

BACKGROUND: Fatigue is a hallmark of breast cancer and is associated with skeletal muscle deconditioning. If cancer-related fatigue occurs early during chemotherapy (CT), the development of skeletal muscle deconditioning and its effect on exercise capacity remain unclear. The aim of this study was to investigate the evolution of skeletal muscle deconditioning and exercise capacity in patients with early-stage breast cancer during CT. METHODS: Patients with breast cancer had a visit before undergoing CT, at 8 weeks, and at the end of chemotherapy (post-CT). Body composition was determined through bioelectrical impedance analysis. Knee extensor, handgrip muscle force and fatigue was quantified by performing maximal voluntary isometric contractions and exercise capacity using the 6-min walking test. Questionnaires were also administered to evaluate quality of life, cancer-related fatigue, and physical activity level. RESULTS: Among the 100 patients, reductions were found in muscle mass (-2.3%, p = .002), exercise capacity (-6.7%, p < .001), and knee extensor force (-4.9%, p < .001) post-CT, which occurred within the first 8 weeks of treatment with no further decrease thereafter. If muscle fatigue did not change, handgrip muscle force decreased post-CT only (-2.5%, p = .001), and exercise capacity continued to decrease between 8 weeks and post-CT (-4.6%, p < .001). Quality of life and cancer-related fatigue were impaired after 8 weeks (p < .001) and remained stable thereafter, whereas the physical activity level remained stable during chemotherapy. CONCLUSIONS: Similar to cancer-related fatigue, skeletal muscle deconditioning and reduced exercise capacity occurred early during breast cancer CT. Thus, it appears essential to prevent these alterations through exercise training implemented during CT.


Asunto(s)
Neoplasias de la Mama , Fuerza de la Mano , Humanos , Femenino , Fuerza de la Mano/fisiología , Tolerancia al Ejercicio , Neoplasias de la Mama/tratamiento farmacológico , Calidad de Vida , Músculo Esquelético , Quimioterapia Adyuvante/efectos adversos
5.
Front Physiol ; 13: 860709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36045743

RESUMEN

The present study aimed to investigate the effect of cold water immersion (CWI) on the recovery of neuromuscular fatigue following simulated soccer match-play. In a randomized design, twelve soccer players completed a 90-min simulated soccer match followed by either CWI or thermoneutral water immersion (TWI, sham condition). Before and after match (immediately after CWI/TWI through 72 h recovery), neuromuscular and performance assessments were performed. Maximal voluntary contraction (MVC) and twitch responses, delivered through electrical femoral nerve stimulation, were used to assess peripheral fatigue (quadriceps resting twitch force, Qtw,pot) and central fatigue (voluntary activation, VA). Performance was assessed via squat jump (SJ), countermovement jump (CMJ), and 20 m sprint tests. Biomarkers of muscle damages (creatine kinase, CK; Lactate dehydrogenase, LDH) were also collected. Smaller reductions in CWI than TWI were found in MVC (-9.9 ± 3%vs-23.7 ± 14.7%), VA (-3.7 ± 4.9%vs-15.4 ± 5.6%) and Qtw,pot (-15.7 ± 5.9% vs. -24.8 ± 9.5%) following post-match intervention (p < 0.05). On the other hand, smaller reductions in CWI than TWI were found only in Qtw,pot (-0.2 ± 7.7% vs. -8.8 ± 9.6%) at 72 h post-match. Afterwards, these parameters remained lower compared to baseline up to 48-72 h in TWI while they all recovered within 24 h in CWI. The 20 m sprint performance was less impaired in CWI than TWI (+11.1 ± 3.2% vs. +18 ± 3.6%, p < 0.05) while SJ and CMJ were not affected by the recovery strategy. Plasma LDH, yet no CK, were less increased during recovery in CWI compared to TWI. This study showed that CWI reduced both central and peripheral components of fatigue, which in turn led to earlier full recovery of the neuromuscular function and performance indices. Therefore, CWI might be an interesting recovery strategy for soccer players.

6.
Am J Physiol Cell Physiol ; 323(4): C1325-C1332, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36094434

RESUMEN

Chemotherapy is a common therapy to treat patients with breast cancer but also leads to skeletal muscle deconditioning. Skeletal muscle deconditioning is multifactorial and intermuscular adipose tissue (IMAT) accumulation is closely linked to muscle dysfunction. To date, there is no clinical study available investigating IMAT development through a longitudinal protocol and the underlying mechanisms remain unknown. Our study was dedicated to investigating IMAT content in patients with early breast cancer who were treated with chemotherapy and exploring the subsequent cellular mechanisms involved in its development. We included 13 women undergoing chemotherapy. Muscle biopsies and ultrasonography assessment were performed before and after chemotherapy completion. Histological and Western blotting analyses were conducted. We found a substantial increase in protein levels of three mature adipocyte markers (perilipin, +901%; adiponectin, +135%; FABP4, +321%; P < 0.05). These results were supported by an increase in oil red O-positive staining (+358%; P < 0.05). A substantial increase in PDGFRα protein levels was observed (+476%; P < 0.05) highlighting an increase in fibro-adipogenic progenitors (FAPs) content. The cross-sectional area of the vastus lateralis muscle fibers substantially decreased (-21%; P < 0.01), and muscle architecture was altered, as shown by a decrease in fascicle length (-15%; P < 0.05) and a decreasing trend in muscle thickness (-8%; P = 0.08). We demonstrated both IMAT development and muscle atrophy in patients with breast cancer who were treated with chemotherapy. FAPs, critical stem cells inducing both IMAT development and skeletal muscle atrophy, also increased, suggesting that FAPs likely play a critical role in the skeletal muscle deconditioning observed in patients with breast cancer who were treated with chemotherapy.


Asunto(s)
Neoplasias de la Mama , Adiponectina/metabolismo , Tejido Adiposo/metabolismo , Neoplasias de la Mama/patología , Femenino , Humanos , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/diagnóstico por imagen , Atrofia Muscular/metabolismo , Perilipinas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo
7.
Med Sci Sports Exerc ; 54(12): 2099-2108, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-35868018

RESUMEN

PURPOSE: The present study investigated the mechanisms of neuromuscular fatigue in quadriceps and hamstring muscles and its consequences on the torque-duration relationship. METHODS: Twelve healthy men performed a 5-min all-out exercise (3-s contraction, 2-s relaxation) with either quadriceps or hamstring muscles on separate days. Central fatigue and peripheral fatigue were quantified via changes in pre- to postexercise voluntary activation (VA) and potentiated twitch (P Tw ) torque evoked by supramaximal electrical stimulation, respectively. Critical torque was determined as the mean torque of the last six contractions, whereas W ' was calculated as the torque impulse done above critical torque. RESULTS: After exercise, maximal voluntary contraction (MVC) decreased to a greater magnitude ( P < 0.001) in quadriceps (-67% ± 9%) compared with hamstring (-51% ± 10%). ∆P Tw was also greater in quadriceps compared with hamstring (-69% ± 15% vs 55% ± 10%, P < 0.01), whereas central fatigue only developed in quadriceps (∆VA, -25% ± 28%). Hamstring demonstrated reduced critical torque compared with quadriceps (60 ± 12 vs 97 ± 26 N·m, P < 0.001) as well as drastically lower W ' (1001 ± 696 vs 8111 ± 2073 N·m·s, P < 0.001). No correlation was found between quadriceps and hamstring for any index of neuromuscular fatigue (∆MVC, ∆P Tw , or ∆VA). CONCLUSIONS: These findings revealed that hamstring presented different etiology and magnitude of neuromuscular fatigue compared with quadriceps. The absence of correlation observed between quadriceps and hamstring fatigue parameters (∆MVC, ∆P Tw , or ∆VA) suggests no interrelation in fatigue etiology between these two muscle groups within individuals and, therefore, highlights the need to investigate specifically hamstring muscle fatigue.


Asunto(s)
Músculos Isquiosurales , Músculo Cuádriceps , Humanos , Masculino , Músculo Cuádriceps/fisiología , Torque , Electromiografía , Fatiga Muscular/fisiología , Estimulación Eléctrica , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Contracción Isométrica/fisiología
8.
Med Sci Sports Exerc ; 54(10): 1751-1760, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35612382

RESUMEN

PURPOSE: This study evaluated whether central motor drive during fatiguing exercise plays a role in determining performance and the development of neuromuscular fatigue during a subsequent endurance task. METHODS: On separate days, 10 males completed three constant-load (80% peak power output), single-leg knee-extension trials to task failure in a randomized fashion. One trial was performed without preexisting quadriceps fatigue (CON), and two trials were performed with preexisting quadriceps fatigue induced either by voluntary (VOL; involving central motor drive) or electrically evoked (EVO; without central motor drive) quadriceps contractions (~20% maximal voluntary contraction (MVC)). Neuromuscular fatigue was assessed via pre-post changes in MVC, voluntary activation (VA), and quadriceps potentiated twitch force ( Qtw,pot ). Cardiorespiratory responses and rating of perceived exertion were also collected throughout the sessions. The two prefatiguing protocols were matched for peripheral fatigue and stopped when Qtw,pot declined by ~35%. RESULTS: Time to exhaustion was shorter in EVO (4.3 ± 1.3 min) and VOL (4.7 ± 1.5 min) compared with CON (10.8 ± 3.6 min, P < 0.01) with no difference between EVO and VOL. ΔMVC (EVO: -47% ± 8%, VOL: -45% ± 8%, CON: -53% ± 8%), Δ Qtw,pot (EVO: -65% ± 7%, VOL: -59% ± 14%, CON: -64% ± 9%), and ΔVA (EVO: -9% ± 7%, VOL: -8% ± 5%, CON: -7% ± 5%) at the end of the dynamic task were not different between conditions (all P > 0.05). Compared with EVO (10.6 ± 1.7) and CON (6.8 ± 0.8), rating of perceived exertion was higher ( P = 0.05) at the beginning of VOL (12.2 ± 1.0). CONCLUSIONS: These results suggest that central motor drive involvement during prior exercise plays a negligible role on the subsequent endurance performance. Therefore, our findings indicate that peripheral fatigue-mediated impairments are the primary determinants of high-intensity single-leg endurance performance.


Asunto(s)
Fatiga Muscular , Músculo Cuádriceps , Electromiografía , Ejercicio Físico/fisiología , Humanos , Rodilla , Masculino , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología
9.
J Physiol ; 600(13): 3069-3081, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35593645

RESUMEN

Intramuscular hydrogen ion (H+ ) and inorganic phosphate (Pi) concentrations were dissociated during exercise to challenge their relationships with peripheral and central fatigue in vivo. Ten recreationally active, healthy men (27 ± 5 years; 180 ± 4 cm; 76 ± 10 kg) performed two consecutive intermittent isometric single-leg knee-extensor trials (60 maximal voluntary contractions; 3 s contraction, 2 s relaxation) interspersed with 5 min of rest. Phosphorus magnetic resonance spectroscopy (31 P-MRS) was used to continuously quantify intramuscular [H+ ] and [Pi] during both trials. Using electrical femoral nerve stimulation, quadriceps twitch force (Qtw ) and voluntary activation (VA) were quantified at rest and throughout both trials. Decreases in Qtw and VA from baseline were used to determine peripheral and central fatigue, respectively. Qtw was strongly related to both [H+ ] (ß coefficient: -0.9, P < 0.0001) and [Pi] (-1.1, P < 0.0001) across trials. There was an effect of trial on the relationship between Qtw and [H+ ] (-0.5, P < 0.0001), but not Qtw and [Pi] (0.0, P = 0.976). This suggests that, unlike the unaltered association with [Pi], a given level of peripheral fatigue was associated with a different [H+ ] in Trial 1 vs. Trial 2. VA was related to [H+ ] (-0.3, P < 0.0001), but not [Pi] (-0.2, P = 0.243), across trials and there was no effect of trial (-0.1, P = 0.483). Taken together, these results support intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents in the interstitial space, as a contributor to central fatigue during exercise. KEY POINTS: We investigated the relationship between intramuscular metabolites and neuromuscular function in humans performing two maximal, intermittent, knee-extension trials interspersed with 5 min of rest. Concomitant measurements of intramuscular hydrogen (H+ ) and inorganic phosphate (Pi) concentrations, as well as quadriceps twitch-force (Qtw ) and voluntary activation (VA), were made throughout each trial using phosphorus magnetic resonance spectroscopy (31 P-MRS) and electrical femoral nerve stimulations. Although [Pi] fully recovered prior to the onset of the second trial, [H+ ] did not. Qtw was strongly related to both [H+ ] and [Pi] across both trials. However, the relationship between Qtw and [H+ ] shifted leftward from the first to the second trial, whereas the relationship between Qtw and [Pi] remained unaltered. VA was related to [H+ ], but not [Pi], across both trials. These in vivo findings support the hypotheses of intramuscular Pi as a primary cause of peripheral fatigue, and muscle acidosis, probably acting on group III/IV muscle afferents, as a contributor to central fatigue.


Asunto(s)
Acidosis , Fosfatos , Electromiografía , Fatiga , Humanos , Masculino , Contracción Muscular , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Fósforo
10.
J Cachexia Sarcopenia Muscle ; 13(3): 1896-1907, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35373507

RESUMEN

BACKGROUND: Chemotherapy is extensively used to treat breast cancer and is associated with skeletal muscle deconditioning, which is known to reduce patients' quality of life, treatment efficiency, and overall survival. To date, skeletal muscle mitochondrial alterations represent a major aspect explored in breast cancer patients; nevertheless, the cellular mechanisms remain relatively unknown. This study was dedicated to investigating overall skeletal muscle mitochondrial homeostasis in early breast cancer patients undergoing chemotherapy, including mitochondrial quantity, function, and dynamics. METHODS: Women undergoing (neo)adjuvant anthracycline-cyclophosphamide and taxane-based chemotherapy participated in this study (56 ± 12 years). Two muscle biopsies were collected from the vastus lateralis muscle before the first and after the last chemotherapy administration. Mitochondrial respiratory capacity, reactive oxygen species production, and western blotting analyses were performed. RESULTS: Among the 11 patients, we found a decrease in key markers of mitochondrial quantity, reaching -52.0% for citrate synthase protein levels (P = 0.02) and -38.2% for VDAC protein levels (P = 0.04). This mitochondrial content loss is likely explained by reduced mitochondrial biogenesis, as evidenced by a decrease in PGC-1α1 protein levels (-29.5%; P = 0.04). Mitochondrial dynamics were altered, as documented by a decrease in MFN2 protein expression (-33.4%; P = 0.01), a key marker of mitochondrial outer membrane fusion. Mitochondrial fission is a prerequisite for mitophagy activation, and no variation was found in either key markers of mitochondrial fission (Fis1 and DRP1) or mitophagy (Parkin, PINK1, and Mul1). Two contradictory hypotheses arise from these results: defective mitophagy, which probably increases the number of damaged and fragmented mitochondria, or a relative increase in mitophagy through elevated mitophagic potential (Parkin/VDAC ratio; +176.4%; P < 0.02). Despite no change in mitochondrial respiratory capacity and COX IV protein levels, we found an elevation in H2 O2 production (P < 0.05 for all substrate additions) without change in antioxidant enzymes. We investigated the apoptosis pathway and found an increase in the protein expression of the apoptosis initiation marker Bax (+72.0%; P = 0.04), without variation in the anti-apoptotic protein Bcl-2. CONCLUSIONS: This study demonstrated major mitochondrial alterations subsequent to chemotherapy in early breast cancer patients: (i) a striking reduction in mitochondrial biogenesis, (ii) altered mitochondrial dynamics and potential mitophagy defects, (iii) exacerbated H2 O2 production, and (iv) increased initiation of apoptosis. All of these alterations likely explain, at least in part, the high prevalence of skeletal muscle and cardiorespiratory deconditioning classically observed in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/metabolismo , Femenino , Homeostasis , Humanos , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Calidad de Vida , Ubiquitina-Proteína Ligasas/metabolismo
11.
J Appl Physiol (1985) ; 132(3): 689-698, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35085030

RESUMEN

This study examined the impact of aging on the elastic and resistive components of the work of breathing (Wb) during locomotor exercise at a given 1) ventilatory rate, 2) metabolic rate, and 3) operating lung volume. Eight healthy younger (25 ± 4 yr) and 8 older (72 ± 6 yr) participants performed incremental bicycle exercise, from which retrospective analyses identified similar ventilatory rates (approximately 40, 70, and 100 L·min-1), similar metabolic rates (V̇o2: approximately 1.2, 1.6, and 1.9 L·min-1), and similar lung volumes [inspiratory and expiratory reserve volumes (IRV/ERV: approximately 25/34%, 16/33%, and 13-34% of vital capacity]. Wb at each level was quantified by integrating the averaged esophageal pressure-volume loop, which was then partitioned into elastic and resistive components of inspiratory and expiratory work using the modified Campbell diagram. IRV was smaller in the older participants during exercise at ventilations of 70 and 100 L·min-1 and during exercise at the three metabolic rates (P < 0.05). Mainly because of a greater inspiratory elastic and resistive Wb in the older group (P < 0.05), total Wb was augmented by 40%-50% during exercise at matched ventilatory and matched metabolic rates. When examined during exercise evoking similar lung volumes, total Wb was not different between the groups (P = 0.86). Taken together, although aging exaggerates total Wb during locomotor exercise at a given ventilatory or a given metabolic rate, this difference is abolished during exercise at a given operating lung volume. These findings highlight the significance of operating lung volume in determining the age-related difference in Wb during locomotor exercise.NEW & NOTEWORTHY This study evaluated the impact of aging on the work of breathing (Wb) during locomotor exercise evoking similar ventilatory rates, metabolic rates, and operating lung volumes in young and older individuals. Mainly because of a greater inspiratory elastic and resistive Wb in older participants, total Wb was higher during exercise at any given ventilatory and metabolic rate with aging. However, this age-related difference was abolished during exercise evoking similar operating lung volumes in both age groups. These findings highlight the significance of lung volumes in determining the age-related difference in total Wb.


Asunto(s)
Ejercicio Físico , Trabajo Respiratorio , Anciano , Envejecimiento , Humanos , Masculino , Respiración , Estudios Retrospectivos
12.
Int J Sports Physiol Perform ; 17(3): 423-431, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853187

RESUMEN

PURPOSE: This study aimed to determine the contribution of metabolic, cardiopulmonary, neuromuscular, and biomechanical factors to the energy cost (ECR) of graded running in well-trained runners. METHODS: Eight men who were well-trained trail runners (age: 29 [10] y, mean [SD]; maximum oxygen consumption: 68.0 [6.4] mL·min-1·kg-1) completed maximal isometric evaluations of lower limb extensor muscles and 3 randomized trials on a treadmill to determine their metabolic and cardiovascular responses and running gait kinematics during downhill (DR: -15% slope), level (0%), and uphill running (UR: 15%) performed at similar O2 uptake (approximately 60% maximum oxygen consumption). RESULTS: Despite similar O2 demand, ECR was lower in DR versus level running versus UR (2.5 [0.2] vs 3.6 [0.2] vs 7.9 [0.5] J·kg-1·m-1, respectively; all P < .001). Energy cost of running was correlated between DR and level running conditions only (r2 = .63; P = .018). Importantly, while ECR was correlated with heart rate, cardiac output, and arteriovenous O2 difference in UR (all r2 > .50; P < .05), ECR was correlated with lower limb vertical stiffness, ground contact time, stride length, and step frequency in DR (all r2 > .58; P < .05). Lower limb isometric extension torques were not related to ECR whatever the slope. CONCLUSION: The determining physiological factors of ECR might be slope specific, mainly metabolic and cardiovascular in UR versus mainly neuromuscular and mechanical in DR. This possible slope specificity of ECR during incline running opens the way for the implementation of differentiated physiological evaluations and training strategies to optimize performance in well-trained trail runners.


Asunto(s)
Prueba de Esfuerzo , Consumo de Oxígeno , Adulto , Atletas , Fenómenos Biomecánicos , Marcha/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología
13.
Front Cell Dev Biol ; 9: 719643, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34595171

RESUMEN

Breast cancer represents the most commonly diagnosed cancer while neoadjuvant and adjuvant chemotherapies are extensively used in order to reduce tumor development and improve disease-free survival. However, chemotherapy also leads to severe off-target side-effects resulting, together with the tumor itself, in major skeletal muscle deconditioning. This review first focuses on recent advances in both macroscopic changes and cellular mechanisms implicated in skeletal muscle deconditioning of breast cancer patients, particularly as a consequence of the chemotherapy treatment. To date, only six clinical studies used muscle biopsies in breast cancer patients and highlighted several important aspects of muscle deconditioning such as a decrease in muscle fibers cross-sectional area, a dysregulation of protein turnover balance and mitochondrial alterations. However, in comparison with the knowledge accumulated through decades of intensive research with many different animal and human models of muscle atrophy, more studies are necessary to obtain a comprehensive understanding of the cellular processes implicated in breast cancer-mediated muscle deconditioning. This understanding is indeed essential to ultimately lead to the implementation of efficient preventive strategies such as exercise, nutrition or pharmacological treatments. We therefore also discuss potential mechanisms implicated in muscle deconditioning by drawing a parallel with other cancer cachexia models of muscle wasting, both at the pre-clinical and clinical levels.

14.
J Appl Physiol (1985) ; 131(6): 1691-1700, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672767

RESUMEN

This study investigated the impact of dietary nitrate supplementation on peripheral hemodynamics, the development of neuromuscular fatigue, and time to task failure during cycling exercise. Eleven recreationally active male participants (27 ± 5 yr, V̇o2max: 42 ± 2 mL/kg/min) performed two experimental trials following 3 days of either dietary nitrate-rich beetroot juice (4.1 mmol NO3-/day; DNS) or placebo (PLA) supplementation in a blinded, counterbalanced order. Exercise consisted of constant-load cycling at 50, 75, and 100 W (4 min each) and, at ∼80% of peak power output (218 ± 12 W), to task-failure. All participants returned to repeat the shorter of the two trials performed to task failure, but with the opposite supplementation regime (iso-time comparison; ISO). Mean arterial pressure (MAP), leg blood flow (QL; Doppler ultrasound), leg vascular conductance (LVC), and pulmonary gas exchange were continuously assessed during exercise. Locomotor muscle fatigue was determined by the change in pre to postexercise quadriceps twitch-torque (ΔQtw) and voluntary activation (ΔVA; electrical femoral nerve stimulation). Following DNS, plasma [nitrite] (∼670 vs. ∼180 nmol) and [nitrate] (∼775 vs. ∼11 µmol) were significantly elevated compared with PLA. Unlike PLA, DNS lowered both QL and MAP by ∼8% (P < 0.05), but did not alter LVC (P = 0.31). V̇O2 across work rates, as well as cycling time to task-failure (∼7 min) and locomotor muscle fatigue following the ISO-time comparison were not different between the two conditions (ΔQtw ∼42%, ΔVA ∼4%). Thus, despite significant hemodynamic changes, DNS did not alter the development of locomotor muscle fatigue and, ultimately, cycling time to task failure.NEW & NOTEWORTHY This study sought to characterize the impact of dietary nitrate supplementation on the hemodynamic response, locomotor muscle fatigue, and time to task failure during cycling exercise. Although nitrate supplementation lowered mean arterial pressure and exercising leg blood flow, leg vascular conductance and oxygen utilization were unaffected. Despite significant hemodynamic changes, there was no effect of dietary nitrate on neuromuscular fatigue development and, ultimately, cycling time to task failure.


Asunto(s)
Beta vulgaris , Nitratos , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Ejercicio Físico , Hemodinámica , Humanos , Masculino , Fatiga Muscular , Músculo Esquelético
15.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R687-R698, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34549627

RESUMEN

Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.


Asunto(s)
Metabolismo Energético , Ejercicio Físico , Mitocondrias Musculares/metabolismo , Contracción Muscular , Músculo Cuádriceps/metabolismo , Adulto , Analgésicos Opioides/administración & dosificación , Ciclismo , Respiración de la Célula , Fentanilo/administración & dosificación , Voluntarios Sanos , Humanos , Inyecciones Espinales , Masculino , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Músculo Cuádriceps/inervación , Distribución Aleatoria , Adulto Joven
17.
J Sci Med Sport ; 24(1): 85-91, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32646746

RESUMEN

OBJECTIVES: Recent studies investigated the determinants of trail running performance (i.e., combining uphill (UR) and downhill running sections (DR)), while the possible specific physiological factors specifically determining UR vs DR performances (i.e., isolating UR and DR) remain presently unknown. This study aims to determine the cardiorespiratory responses to outdoor DR vs UR time-trial and explore the determinants of DR and UR performance in highly trained runners. DESIGN: Randomized controlled trial. METHODS: Ten male highly-trained endurance athletes completed 5-km DR and UR time-trials (average grade: ±8%) and were tested for maximal oxygen uptake, lower limb extensor maximal strength, local muscle endurance, leg musculotendinous stiffness, vertical jump ability, explosivity/agility and sprint velocity. Predictors of DR and UR performance were investigated using correlation and commonality regression analyses. RESULTS: Running velocity was higher in DR vs UR time-trial (20.4±1.0 vs 12.0±0.5km·h-1, p<0.05) with similar average heart rate (95±2% vs 94±2% maximal heart rate; p>0.05) despite lower average V̇O2 (85±8% vs 89±7% V̇O2max; p<0.05). Velocity at V̇O2max (vV̇O2max) body mass index (BMI) and maximal extensor strength were significant predictors of UR performance (r2=0.94) whereas vV̇O2max, leg musculotendinous stiffness and maximal extensor strength were significant predictors of DR performance (r2=0.84). CONCLUSIONS: Five-km UR and DR running performances are both well explained by three independent predictors. If two predictors are shared between UR and DR performances (vV̇O2max and maximal strength), their relative contribution is different and, importantly, the third predictor appears very specific to the exercise modality (BMI for UR vs leg musculotendinous stiffness for DR).


Asunto(s)
Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Carrera/fisiología , Adulto , Rendimiento Atlético/fisiología , Dióxido de Carbono/metabolismo , Elasticidad/fisiología , Humanos , Ácido Láctico/sangre , Pierna/fisiología , Masculino , Frecuencia Respiratoria/fisiología , Volumen de Ventilación Pulmonar/fisiología , Factores de Tiempo
18.
Int J Sports Physiol Perform ; 16(2): 273-279, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32820134

RESUMEN

PURPOSE: The purpose of this study was to investigate the influence of the soccer pitch area during small-sided games (SSG) in prepubertal children on physiological and technical demands, and to compare them, for the physiological demands, to high-intensity interval training (HIIT). METHODS: Ten young soccer players (13.0 [0.3] y) performed a HIIT and 3 SSG of various field sizes (30 × 20 m, 42 × 38 m, and 51 × 34 m). Each SSG was performed with 5 players per team, during 4 × 4-minutes interspaced with 1 minute of passive recovery in between. HIIT also followed a 4 × 4-minute protocol with running speed set on an individual basis. Heart rate (HR) was continuously monitored during training sessions. For each exercise modality, time spent above 90% of HRmax (T≥90%,HRmax) was calculated, and technical actions were quantified during SSG by video analysis. RESULTS: T≥90%,HRmax was similar between the 3 SSG (∼587 [276] s; P > .2) but 24% to 37% lower than during HIIT (826 [140] s, P < .05). Coefficients of variations in T≥90%,HRmax were 2.3 to 3.5 times larger in SSG compared with HIIT. For technical actions, greater number of possessions (21 [6] vs ∼14 [4]), and lower ball touches per possession (2.4 [0.6] vs ∼2.9 [0.6]) were found in the small SSG compared with larger SSG, respectively (P < .05). CONCLUSION: The 3 SSG led to lower acute stimulation of the aerobic metabolism, suggesting a lower potential for chronic aerobic adaptations, compared with HIIT. Moreover, interindividual variability in the physiological response was substantially greater in SSG compared with HIIT, indicating increased heterogeneity among players performing the same training protocol.


Asunto(s)
Frecuencia Cardíaca , Entrenamiento de Intervalos de Alta Intensidad , Carrera , Fútbol , Adaptación Fisiológica , Adolescente , Ejercicio Físico , Humanos
19.
J Sports Sci ; 39(7): 815-825, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33191845

RESUMEN

This study explores the cardiorespiratory and muscular fatigue responses to downhill (DR) vs uphill running (UR) at similar running speed or similar oxygen uptake (⩒O2). Eight well-trained, male, trail runners completed a maximal level incremental test and three 15-min treadmill running trials at ±15% slope: i) DR at ~6 km·h-1 and ~19% ⩒O2max (LDR); ii) UR at ~6 km·h-1 and ~70% ⩒O2max (HUR); iii) DR at ~19 km·h-1 and ~70% ⩒O2max (HDR). Cardiorespiratory responses and spatiotemporal gait parameters were measured continuously. Maximal isometric torque was assessed before and after each trial for hip and knee extensors and plantar flexor muscles. At similar speed (~6 km·h-1), cardiorespiratory responses were attenuated in LDR vs HUR with altered running kinematics (all p < 0.05). At similar ⩒O2 (~3 l·min-1), heart rate, pulmonary ventilation and breathing frequency were exacerbated in HDR vs HUR (p < 0.01), with reduced torque in knee (-15%) and hip (-11%) extensors and altered spatiotemporal gait parameters (all p < 0.01). Despite submaximal metabolic intensity (70% ⩒O2max), heart rate and respiratory frequency reached maximal values in HDR. These results further our understanding of the particular cardiorespiratory and muscular fatigue responses to DR and provide the bases for future DR training programs for trail runners.


Asunto(s)
Frecuencia Cardíaca/fisiología , Fatiga Muscular/fisiología , Consumo de Oxígeno/fisiología , Carrera/fisiología , Adulto , Fenómenos Biomecánicos/fisiología , Prueba de Esfuerzo/métodos , Marcha/fisiología , Humanos , Contracción Isométrica/fisiología , Masculino , Músculo Esquelético/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Ventilación Pulmonar/fisiología , Frecuencia Respiratoria/fisiología , Factores de Tiempo , Torque
20.
Med Sci Sports Exerc ; 53(5): 904-917, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33148973

RESUMEN

INTRODUCTION: We determined the recovery from neuromuscular fatigue in six professional (PRO) and seven moderately trained (MOD) cyclists after repeated cycling time trials of various intensities/durations. METHOD: Participants performed two 1-min (1minTT) or two 10-min (10minTT) self-paced cycling time trials with 5 min of recovery in between. Central and peripheral fatigue were quantified via preexercise to postexercise (15-s through 15-min recovery) changes in voluntary activation (VA) and potentiated twitch force. VA was measured using the interpolated twitch technique, and potentiated twitch force was evoked by single (QTsingle) and paired (10-Hz (QT10) and 100-Hz (QT100)) electrical stimulations of the femoral nerve. RESULTS: Mean power output was 32%-72% higher during all the time trials and decreased less (-10% vs -13%) from the first to second time trial in PRO compared with MOD (P < 0.05). Conversely, exercise-induced reduction in QTsingle and QT10/QT100 was significantly lower in PRO after every time trial (P < 0.05). Recovery from fatigue from 15 s to 2 min for QTsingle and QT10/QT100 was slower in PRO after every time trial (P < 0.05). In both groups, the reduction in QTsingle was lower after the 10minTTs compared with 1minTTs (P < 0.05). Conversely, VA decreased more after the 10minTTs compared with 1minTTs (P < 0.05). CONCLUSION: Our findings showed that excitation-contraction coupling was preserved after exercise in PRO compared with MOD. This likely contributed to the improved performance during repeated cycling time trials of various intensity/duration in PRO, despite a slower rate of recovery in its early phase. Finally, the time course of recovery from neuromuscular fatigue in PRO was dependent on the effects of prolonged low-frequency force depression.


Asunto(s)
Atletas , Ciclismo/fisiología , Nervio Femoral/fisiología , Fatiga Muscular/fisiología , Resistencia Física/fisiología , Músculo Cuádriceps/fisiología , Adulto , Estimulación Eléctrica/métodos , Electromiografía , Humanos , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Intercambio Gaseoso Pulmonar/fisiología , Ventilación Pulmonar/fisiología , Recuperación de la Función/fisiología , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...